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Abstract

Highly e�cient, asymmetric total syntheses of the title phospholipids as well as short chain and cross-
linkable aminoether analogs were achieved in ®ve to seven steps from a readily available myo-inositol
derivative. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: cyclitols; phospholipids; inositols; phosphoramidites.

The minor cellular lipid l-a-phosphatidyl-d-myo-inositol (1; PI) and its phosphorylated progeny
have been implicated in a vast array of essential physiologic processes including mitogenesis,
calcium regulation, vesicle tra�cking, apoptosis, and cytoskeleton assembly.1 They function as
precursors2 to low molecular weight second messengers or act directly via regional recruitment
and/or regulation of macromolecules.3 Recent investigations by several laboratories, however,
have identi®ed l-a-phosphatidyl-d-myo-inositol 5-phosphate (3; 5-PIP) and l-a-phosphatidyl-d-
myo-inositol 3,5-bisphosphate (4; 3,5-PIP2) as potential new members of the PI cascade4 and
revealed additional pathways for the biosynthesis of PIPns in eukaryotes.5 The physiologic role(s)
of these novel PI metabolites and their interconversions, e.g. 2$4$3, are areas of intense,
worldwide scrutiny. As part of our continuing program6 to provide comprehensive access to all
components of the PI cycle, we report herein concise, total syntheses of 3-PIP (2), 5-PIP (3), and
3,5-PIP2 (4) as well as some useful glyceryl lipid analogs.7
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Mild acidic hydrolysis of orthoformate 5 (mp 123±25�C), readily available8 in two steps from
myo-inositol, followed by p-toluenesulfonic acid (PTSA) catalyzed exchange with (+)-camphor
dimethyl ketal9 provided convenient access to the chromatographically separable ketals 6 and 7
[TLC: Et2O:CH2Cl2 (5:95), Rf �0.32 and 0.35, respectively] in good overall yield (Scheme 1).10,11

Treatment of diastereomer 7 with excess O,O-dibenzyl-N,N-diisopropylphosphoramidite12 and in
situ peracid oxidation generated the corresponding bis-phosphate triester. Subsequent cleavage of
the camphor ketal at 0�C using tri¯uoroacetic acid smoothly led to diol 8 that was converted to tris-
phosphate 9a13,14 utilizing Watanabe's pyridinium perbromide methodology15 for the activation
of 1,2-di-O-hexadecanoyl-sn-glyceryl dibenzylphosphite6 10a and regioselective phosphorylation
of the C(1)-alcohol.

Phosphoramidite6 11a was less satisfactory under a variety of conditions and often resulted in
mixtures of regioisomers and/or bis-derivatized products. Exhaustive debenzylation by catalytic
hydrogenation over Pd black in EtOH/H2O in the presence of NaHCO3 a�orded 3,5-PIP2 (4a),
isolated as its sodium salt.16

Scheme 1. Reaction conditions: (a) MeOH:10N HCl (12.5:1), 65�C, 0.45 h (87%); (b) (+)-camphor dimethyl ketal (3
equiv.), PTSA (2 mol%), CH2Cl2, 23

�C, 4 h (82%); (c) (iPr)2NP(OBn)2 (2.5 equiv.), 1H-tetrazole, CH2Cl2, 23
�C, 2 h;

m-CPBA, ^40�C, 1 h (88%); (d) CF3CO2H:CH2Cl2:MeOH (1.5:3:0.5), 0�C, 0.5 h (77%); (e) phosphite 10a±c (2 equiv.),
py.HBr3 (2.25 equiv.), CH2Cl2:py:Et3N (5:1:0.1), ^20�C to 0�C, 0.5 h (63%); (f) Pd black, H2 (52 psi), NaHCO3 (5
equiv.), EtOH:H2O (6:1), 23�C, 6 h (79%)

4272



Alternatively, phosphorylation of the C(3)-alcohol in 7 using a limited amount of reagent and trityl
cation mediated17 benzylation of the remaining C(5)-hydroxyl with benzyltrichloroacetimidate
gave rise to phosphate 12 (Scheme 2). The latter's transformation to 3-PIP (2a) via 13 and 14a
proceeded as described above in comparable yields.

The remaining acetal 6was exploited for the preparation of 5-PIP (3) via regioselective etheri®cation
of the in situ generated stannyl ester of the C(1)-hydroxyl and phosphorylation of the residual
C(5)-alcohol (Scheme 3). The resultant phosphate triester 15 yielded the di�erentially protected
inositol 16when subjected to acid ketal hydrolysis and trichloroacetimidate benzylation. Liberation

Scheme 2. Reaction conditions: (a) (iPr)2NP(OBn)2 (1 equiv.), 1H-tetrazole, CH2Cl2, 23
�C, 2 h; m-CPBA, ^40�C, 1 h

(71%); (b) PhCH2OC(NH)CCl3, Ph3CBF4 (5 mol%), Et2O, 23�C, 36 h (73%); (c) CF3CO2H:CH2Cl2:MeOH
(1.5:3:0.5), 0�C, 0.5 h (77%); (d) phosphite 10a±c (2 equiv.), py.HBr3 (2.25 equiv.), CH2Cl2:py:Et3N (5:1:0.1), ^20�C to
0�C, 0.5 h (63%); (e) Pd black, H2 (52 psi), NaHCO3 (5 equiv.), EtOH:H2O (6:1), 23�C, 6 h (79%)

Scheme 3. Reaction conditions: (a) (n-Bu3Sn)2O (1 equiv.), PhH, 80�C, 6 h with Dean±Stark; MPM-Cl (1.1 equiv.), CsF
(4 equiv.), DMF, 23�C, 12 h (71%); (b) (iPr)2NP(OBn)2, 1H-tetrazole, CH2Cl2, 23

�C, 2 h; m-CPBA, ^40�C, 1 h (81%);

(c) CF3CO2H:CH2Cl2:MeOH (1.5:3:0.5), 0�C, 0.5 h (77%); (d) PhCH2OC(NH)CCl3, Ph3CBF4 (5 mol%), Et2O, 23�C,
36 h (73%); (e) DDQ, CH2Cl2:H2O (9:1), 23�C, 4 h (80%); (f) phosphoramidite 11a±c, 1H-tetrazole, CH2Cl2, 23

�C, 2
h; m-CPBA, ^40�C, 1 h (81%); (g) Pd black, H2 (52 psi), NaHCO3 (5 equiv.), EtOH:H2O (6:1), 23�C, 6 h (79%)
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of the C(1)-alcohol by DDQ induced deprotection, phosphatidylation with 11a, and oxidation
furnished 17a from which 5-PIP (3a) was obtained as its sodium salt by standard catalytic
hydrogenolysis.
Repetition of the ®nal condensations in Schemes 1±3 using 10/11b,c6 a�orded 4/2/3b,d as

appropriate. The dioctanoyl glyceryl analogs (b-series) are more water soluble than the fatty acid
versions (a-series) and have proven more tractable in some assays. The o-aminoalkyl analogs
(d-series) can be derivatized with ¯uorescent, radioactive, and a�nity labels; their application in
the isolation of several speci®c PIP binding proteins will be reported elsewhere.
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